Nasal high flow therapy for neonates: Current evidence and future directions

Kate A Hodgson, Peter G Davis and Louise S Owen

Newborn Research Centre, Royal Women’s Hospital, Melbourne, Victoria, Australia

Abstract: Nasal high flow (nHF) therapy is a commonly used method of providing non-invasive respiratory support for neonates. It has several potential mechanisms of action: continuous distending pressure, nasopharyngeal dead space washout, provision of heated and humidified gases and reduction of work of breathing. nHF is used in a number of clinical scenarios for preterm and term infants, including primary respiratory and post-extubation support. In recent years, large trials have generated evidence pertinent to these indications. Novel applications for nHF in neonates warrant further research: during endotracheal intubation, for initial delivery room stabilisation of preterm infants and in conjunction with minimally invasive surfactant therapy.

Key words: nasal high flow; neonatology; respiratory.

The 1960s saw the advent of endotracheal ventilation support for preterm infants. During this era, mortality rates were high, and complications such as pneumothorax, pulmonary interstitial emphysema and bronchopulmonary dysplasia (BPD) were common. Post-mortem examinations identified hyaline membrane disease, and subsequently, surfactant deficiency was identified as the underlying cause. The availability of exogenous surfactant therapy in the 1990s revolutionised neonatal intensive care in Australia, reducing morbidity and mortality. Despite this, the incidence of BPD remained high, and research turned to non-invasive methods of respiratory support for these infants. Initially, observational studies suggested a reduction in the incidence of BPD when nasal continuous positive airway pressure (CPAP) was used instead of mechanical ventilation. Randomised studies subsequently showed that CPAP could be used from birth, even in extremely preterm infants. Infants managed with CPAP are less likely to receive surfactant, have fewer days of endotracheal ventilation and may have a lower risk of BPD. CPAP has now become the mainstay of non-invasive support for preterm infants, although it has some disadvantages: nasal trauma is common, the interface is bulky, and highly trained nursing staff are required to manage CPAP. In recent years, an alternative, nasal high flow (nHF) therapy, has greatly increased in popularity. nHF uses smaller bi-nasal prongs and delivers heated, humidified gas at flows of >1 L/min, typically 2–8 L/min. Its widespread use in neonates occurred before evidence of its safety and efficacy was available. Recently, several large trials have evaluated nHF in various clinical settings. With respect to the clinical applications of nHF, this review will present the available meta-analysis and randomised controlled trial evidence for nHF. Due to the relative paucity of evidence regarding mechanisms of action of nHF, these sections have included studies conducted with a variety of research methodologies.

Mechanisms of Action

Continuous distending pressure

During CPAP therapy, continuous distending pressure is thought to improve lung mechanics and prevent atelectasis. In contrast to CPAP, where the clinician sets the applied distending pressure, nHF requires flow rather than pressure to be selected. Although nHF does generate some distending pressure, this varies with gas flow and leak. Despite initial concerns about excessive pressure generation and risk of pneumothorax, most in vivo studies have shown that pharyngeal pressure generated by nHF is (i) similar to, or below, that generated during CPAP and (ii) increases with increased flow rate. Spence et al. found a linear relationship between flow and intrapharyngeal pressure, and Wilkinson et al. found that pharyngeal pressure increased by 0.8 cm H₂O per 1 L/min increase in flow. Others
have demonstrated similar trends but with smaller pressure changes with increasing flow.17

For a given flow, the delivered pressure appears to be inversely proportional to an infant’s weight.13,16 that is, the smallest infants require less flow to generate the same distending pressure as larger infants. One small study compared pressure generated by two nHF devices, Optiflow (Fisher & Paykel, Auckland, New Zealand) and Vapotherm (Vapotherm, Exeter, CA, USA), and showed no pressure differences with flows of 2–6 L/min and slightly higher pharyngeal pressures with Vapotherm at 8 L/min.15 This may reflect the inclusion of a pressure relief valve in the Optiflow system but not in Vapotherm.14

Distending pressure is also determined by leak;11 manufacturers recommend a prong size that allows 50% ‘leak’ around the nares. Mouth leaks also potentially affect pressure generation, although findings from studies investigating this are contradictory.13,16 Distending pressure increases as the leak around the prongs falls; hence, appropriate sizing of prongs is an important safety consideration for nHF use.

Nasopharyngeal dead space washout

Washout of the nasopharyngeal dead space and subsequent carbon dioxide removal have been proposed as a mechanism of action of nHF,15 although no neonatal studies have been performed to confirm this.19,26 A study of neonatal piglets showed that, during nHF, carbon dioxide levels reduced in a flow-dependent manner, independent of leak.19 A recent bench-top study with a simulated preterm infant lung model reported faster gas washout during nHF than during CPAP over a variety of flow and pressure settings,20 potentially due to more turbulent gas flow during nHF.

Studies in children with bronchiolitis have shown similar reductions in carbon dioxide levels after nHF commencement;21,22 however, studies in paediatric patients post-cardiac surgery have not shown this effect.23

Heating and humidification of gases

Provision of heated and humidified gas flow is a requirement for all respiratory support modes. Delivery of unheated, unhumidified gas can adversely affect the airway mucosa and mucociliary function, reducing pulmonary compliance and inducing bronchoconstriction.24,25 All commercially available nHF systems therefore deliver heated, humidified gas.21 A laboratory study comparing the temperature and humidity achieved during nHF and CPAP, using a simulated neonatal lung model, showed that higher mean gas temperatures were achieved during CPAP (34.5 vs. 34.0°C, \(P < 0.01\)), but higher relative humidity was achieved with nHF (83 vs. 76%, \(P < 0.01\)).26 Relative humidity decreased slightly as flow increased during CPAP, whereas it increased with increasing flow during nHF.26 A neonatal manikin study27 also reported that overall temperature was higher with CPAP than nHF (35.5 vs. 34.3°C) but conversely showed that relative humidity decreased during nHF at the highest flow levels. All the devices produced absolute humidity within international recommendations at flows of 8 L/min. The clinical significance of minor differences between devices is uncertain.

Reduction of work of breathing

The large surface area of the nasopharynx allows humidification and heating of inspired gas but causes resistance to inspiratory flow.15 CPAP reduces this resistance by splitting the upper airway open.24 nHF delivers gas flows above the peak inspiratory flow of the patient, reducing resistance and work of breathing (WOB).15 Some studies that have compared the effects of nHF and CPAP on WOB in neonates have found that both modes reduce respiratory effort,29–31 although de Jongh reported lower indices of WOB with CPAP 5–6 cm H\textsubscript{2}O compared with nHF of 3–5 L/min.32

Indications for nHF Therapy

Primary respiratory support

In 2016, a Cochrane review pooled the available data comparing nHF with CPAP for initial treatment of respiratory distress syndrome (RDS) in preterm infants (four trials, 439 patients).12,33–36 With the exception of one small study,36 infants were all >28 weeks’ gestation. One study33 permitted surfactant treatment using the INSURE technique (intubation-surfactant-extubation) before and after study entry. The review concluded that rates of treatment failure and need for intubation within 7 days were similar between nHF and CPAP, with no difference in rates of death or BPD.

Since 2016, three further non-inferiority trials have added to the evidence base. While one trial found nHF to be non-inferior to CPAP, the largest favoured nCPAP, and a third, smaller study was inconclusive. Lavizzari et al.37 found nHF to be non-inferior to CPAP with respect to the need for intubation and ventilation in 316 infants between 29 and 36 + 6 weeks’ gestation,57 with no differences in secondary outcomes. Treatment failure occurred in 10.8 versus 9.5% of infants receiving nHF and CPAP, respectively (95% confidence interval (CI) of risk difference, \(-6.0, 8.6, P = 0.71\)). The multicentre High Flow Nasal Cannulae as Primary Support in the Treatment of Early Respiratory Distress (HIPSTER) trial conducted by Roberts et al.38 randomised 564 infants at 28–36 + 6 weeks’ gestation to nHF or CPAP.58 The trial was stopped after 75% of the planned recruitment due to a significantly higher treatment failure rate (defined by objective oxygenation, blood gas and apnoea criteria) in the nHF group (25.5 vs. 13.3% in the CPAP group, \(P < 0.001\)). Intubation rates were similar between groups (15.5 nHF vs. 11.5% CPAP, \(P = 0.17\)), including in the <32 week gestational age (GA) subgroup. Infants in the nHF group had less nasal trauma (18.5 vs. 8.3%, \(P < 0.001\)) and less pneumothoraces while on allocated treatment (2.1 vs. 0.0%, \(P = 0.02\)); however, the median duration of respiratory support was a day longer in the nHF group. A third, smaller randomised controlled trial (RCT) by Shin et al.39 randomised 85 infants (mean 33 weeks’ GA) to nHF or CPAP and was technically inconclusive, although the rate of treatment failure was 38% in the nHF group versus 21% in the CPAP group (95% CI of risk difference –1.9, 36.2, \(P = 0.1\)). There were no significant differences in secondary clinical outcomes.

There were important differences in the design of these three studies; the use of surfactant and ‘rescue’ CPAP in the nHF arms varied. In the Lavizzari trial, infants could receive surfactant before or after trial enrolment, without fulfilling treatment failure criteria, whereas infants in the other trials could not. Almost half
of the infants included in Lavizzari's trial received surfactant (nHF: 44%, CPAP 46%). Rates of surfactant administration were similar in both groups; however, its use may in part explain the lower rate of treatment failure compared with the other trials, where no infants received surfactant prior to reaching treatment failure criteria. A further difference between the studies is that infants in the Lavizzari study who met failure criteria were intubated and ventilated, whereas those in the nHF arm of the HIPSTER trial were given ‘rescue’ CPAP. This prevented intubation in 40% of those who reached treatment failure in the nHF group.

Use of ‘rescue’ CPAP in the nHF group may have influenced the secondary outcomes in this trial and is an important consideration for units instituting nHF without having CPAP available as a rescue therapy. Finally, the study by Shin et al. was much smaller and had a much larger non-inferiority margin than the others.

Differences between these studies make a universal recommendation regarding the use of nHF for primary respiratory support difficult. A 2015 meeting of international experts concluded that, while nHF can be considered an alternative to CPAP, further large RCTs are required to determine its efficacy and safety as primary support for RDS.40 Recently, a panel of international research experts was surveyed to determine consensus guidelines for the management of neonates with nHF.41 There was general support for the use of nHF as primary therapy for respiratory distress, with consideration of the infant's gestational age and initial oxygen requirement. Individual units may consider these and other factors, such as rate of surfactant use, patient population and local rate of nasal trauma, when choosing between primary support therapies.

In summary, current evidence for the use of nHF for primary respiratory support of preterm RDS suggests the following:

1. nHF may not be equivalent to CPAP.
2. The use of ‘rescue’ CPAP in the event of nHF failure avoids intubation in many infants.
3. There is little evidence to guide primary nHF therapy in infants less than 28 weeks’ GA.

Post-extubation support

Most very preterm infants require respiratory support post-extubation. The 2016 Cochrane meta-analysis of nHF post-extubation (six trials, 934 infants) concluded that there was no difference between nHF and CPAP with respect to treatment failure, reintubation or secondary outcomes, including BPD, in preterm infants >28 weeks’ gestation.12 Infants randomised to nHF had less nasal trauma and a borderline lower pneumothorax rate. Some studies allowed ‘rescue’ CPAP prior to reintubation13,42–45 or crossover from CPAP to nHF in the event of nasal trauma.32,41 The largest study of preterm infants reported that 48% of infants who reached treatment failure with nHF were successfully treated with ‘rescue’ CPAP, avoiding reintubation for at least 7 days.44

Two more recent RCTs have similarly found no difference in treatment failure or reintubation rates between nHF and CPAP post-extubation. Kang et al. randomised 161 preterm infants <32 weeks’ GA42 and found no difference in these outcomes overall, but treatment failure was higher with nHF in the smaller infants (26–28 weeks’ GA). A second, smaller study found a higher rate of treatment failure but a similar rate of intubation in infants <32 weeks’ GA managed with nHF;46 the intubation rates were similar due to the use of rescue CPAP in the nHF arm.

Similar to the primary support trials, relatively few infants <28 weeks’ GA have been studied (233 infants from two studies included in the Cochrane meta-analysis). The largest trial that included infants <28 weeks’ GA reported a much higher treatment failure rate for nHF in infants <26 weeks’ GA, and the authors advised caution in its use as post-extubation support in these infants.44

Several retrospective cohort studies have demonstrated a longer duration of respiratory support or supplemental oxygen therapy in very preterm infants managed with nHF compared with CPAP.47,48 The interpretation of these studies is limited by methodological considerations; there may be significant differences in the severity of lung disease and other comorbidities between the groups. Some RCTs have also shown longer duration of respiratory support with nHF use;45,46 yet others have not.37,39 Importantly, there is no corresponding increase in the incidence of BPD for infants managed with nHF.12 Further research may inform the best approach to weaning nHF to minimise the duration of respiratory support for preterm infants.

In summary:

1. nHF has similar efficacy to CPAP for post-extubation support with respect to reintubation, death and BPD, with the exception of babies <28 weeks’ gestation, in whom CPAP should be used by preference.
2. Following extubation, nHF is associated with less nasal trauma than CPAP.
3. Availability of rescue CPAP may be important for preventing extubation failure when using nHF and may be preferred as first-line therapy in the smallest infants.

Weaning from CPAP

Four RCTs have examined nHF as a strategy for weaning from CPAP, with conflicting effects seen on the duration of supplemental oxygen and respiratory support.49–52 Two studies51,52 found no difference in outcome when weaning directly from CPAP was compared with changing to nHF. The third study50 found that using nHF to wean from CPAP resulted in more days of supplemental oxygen and respiratory support, and a fourth study found the reverse to be true.50 Currently, there is insufficient evidence to guide practice recommendations regarding the use of nHF for weaning from CPAP.

Use in non-tertiary centres

Non-tertiary centres have unique considerations when choosing between non-invasive respiratory support modes, such as nursing skills, availability of rescue CPAP and potential need to transfer deteriorating babies. Thus far, all the evidence for neonatal nHF use comes from tertiary neonatal units. However, a large, multicentre RCT comparing nHF with CPAP in Australian non-tertiary neonatal units has recently completed recruitment,53 and results are awaited. While cost is a consideration, there is little evidence that nHF is cheaper than CPAP. In the HIPSTER trial, total cost of tertiary hospital stay did not differ significantly between groups,54 and a recent economic evaluation of nHF found that the higher

KA Hodgson et al. Nasal High Flow therapy for neonates

© 2019 Paediatrics and Child Health Division (The Royal Australasian College of Physicians)
nHF therapy is a relatively new addition to the neonatal intensive care environment. There is good evidence for its use as an alternative to CPAP for post-extubation respiratory support; however, CPAP should be available as ‘rescue’ therapy in the event of nHF failure. Caution should also be applied when using nHF in extremely preterm infants. Evidence for primary respiratory support and weaning from CPAP is less clear-cut. As nHF use in tertiary and non-tertiary centres increases, further research is required regarding specific aspects of the therapy and to explore new therapeutic indications.

Future Research Directions
There are a number of potential novel applications for neonatal nHF therapy that are worthy of evaluation in a research setting:

Intubation support
Neonatal intubation is a difficult skill to perform; attempts commonly take longer than recommended and result in desaturation or bradycardia. A new technique called Transnasal Humidified Rapid-Insufflation Ventilatory Exchange utilises nHF to prolong the safe apnoeic time following induction of anaesthesia, likely due to upper airway splinting, continuous insufflation and dead space washout. This technique has recently been evaluated in healthy children undergoing anaesthesia and was found to significantly prolong the time to desaturation. No studies have investigated this technique in preterm infants who frequently become unstable during intubation.

nHF for delivery room stabilisation of preterm infants
nHF may be of value as a method of stabilisation for preterm infants in the delivery room. It is quick and easy to apply, and it is postulated that it may stimulate respiration and improve gas exchange, avoiding the need for immediate CPAP or positive pressure ventilation. nHF use in the delivery room has only been reported in a single, small, observational study of infants <30 weeks’ GA; most infants were successfully stabilised with nHF, and overall intubation rates were lower than the unit average prior to the study. The use of delivery room nHF has yet to be evaluated in adequately powered randomised trials.

nHF during neonatal transport
The use of nHF in elective and emergency neonatal transport has been reported in one UK study of 102 infants. Whilst no comparison was made with transports on CPAP, the authors reported a very small (2%) increase in oxygen requirement during transport on nHF, and it was believed to be safe and effective. Provision of ‘rescue’ CPAP during transport in the event of patient deterioration may present a logistic challenge; therefore, this requires further exploration before widespread implementation.

Other avenues for future research into nHF use in preterm infants include:

• Comparisons between commercially available nHF devices.
• Investigating the best approach to weaning nHF, particularly given concerns about the duration of supplemental oxygen and respiratory support.
• Further evaluation of nHF use in extremely preterm infants.

Conclusions
nHF therapy is a relatively new addition to the neonatal intensive care environment. There is good evidence for its use as an alternative to CPAP for post-extubation respiratory support; however, CPAP should be available as ‘rescue’ therapy in the event of nHF failure. Caution should also be applied when using nHF in extremely preterm infants. Evidence for primary respiratory support and weaning from CPAP is less clear-cut. As nHF use in tertiary and non-tertiary centres increases, further research is required regarding specific aspects of the therapy and to explore new therapeutic indications.

Multiple Choice Questions
1 Current evidence supports the efficacy of nasal high flow (nHF) compared with continuous positive airway pressure (CPAP) for which of the following indications in preterm neonates?
 a) Primary respiratory support
 b) Post-extubation support
 c) During intubation
 d) ‘Weaning’ from CPAP
 e) Delivery room stabilisation
 Answer: b. Current meta-analyses indicate that the use of nHF for post-extubation support of preterm infants results in similar rates of reintubation compared with CPAP. The exception to this is infants <26 weeks’ gestation, for whom the limited data suggest that rates of treatment failure with nHF are high. Studies have shown conflicting results for nHF use as primary respiratory support and ‘weaning’ from CPAP. The use of nHF during intubation and for delivery room stabilisation requires further investigation.

2 Regarding the use of nHF for neonates:
 a) Similar distending pressure is generated irrespective of the infant’s weight.
 b) nHF interfaces use larger nasal prongs than CPAP.
 c) Distending pressure decreases with increasing flow rates.
 d) Prongs should be sized to completely occlude the nostrils.
 e) nHF may increase nasopharyngeal dead space washout.
 Answer: c. Nasopharyngeal dead space washout is a proposed mechanism of action of nHF. Other mechanisms of action include generation of continuous distending pressure, which increases with increasing flow rate and is inversely proportional to infant weight. To avoid excessive distending pressure, nHF prongs (which are smaller than CPAP prongs) should be sized to allow some gas leak around them in the nares.

3 What advantage does the use of nHF offer compared with CPAP?
 a) nHF is cheaper.
 b) nHF reduces nasal trauma.
 c) nHF reduces the risk of chronic lung disease.
 d) nHF devices allow clinicians to set a specific distending pressure.
 e) nHF does not require heated humidified gas.
 Answer: b. nHF reduces the rates of nasal trauma compared with CPAP. Current evidence demonstrates no difference in cost between nHF and CPAP when all factors are considered. nHF devices (which all use heated humidified gas) require flow, not pressure, to be set. Current evidence indicates that the rate of...
chronic lung disease is similar when nHF is used compared with CPAP.

References

Nasal High Flow therapy for neonates

KA Hodgson et al.

44 Manley BJ, Owen LS, Doyle LW et al. A randomized controlled trial of weaning strategies for preterm infants on nasal continuous positive airway pressure.